IOWA STATE UNIVERSITY

ECpE Department

Distribution System Resilience: Hardening, Preparation and Restoration

Dr. Zhaoyu Wang Department of Electrical and Computer Engineering Iowa State University

Outline

Introduction to Resilience

• Pre-Event Preparation

 Post-Event Outage Management and Service Restoration

Resilience-Oriented Long-Term Planning

IOWA STATE UNIVERSITY

History of Resilience

- The word resilience is found from the year 1430 in late medieval and early modern French as a juridical term for contract termination and for the restoration of the original legal situation.
- In 1818, Tredgold used resilience to explain why some types of wood were able to accommodate sudden and severe loads without breaking.
- In 1856, Robert Mallet further developed this concept of resilience as a means of measuring and comparing the strength of materials used in construction.
- In 1973, Crawford Holling introduced the concept of resilience to ecology and the environment. He defined it as a measure of the persistence of systems and their ability to absorb change and disturbance.

3

History of Resilience (cont.)

- In 1977, Amory Lovins adapted Holling's resilience concept to energy systems in his article "Resilience In Energy Strategy."
- In 2000, Neil Adger introduced resilience to social science and defined it as the ability of communities to withstand external shocks to their social infrastructure.
- In 2009, the National Infrastructure Advisory Council defined critical infrastructure resilience as:

"...the ability to reduce the magnitude and/or duration of disruptive events. The effectiveness of a resilient infrastructure or enterprise depends upon its ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially disruptive event."

IOWA STATE UNIVERSITY

Definitions

Resilience	The ability to prepare for and adapt to changing conditions and withstand and recover rapidly from disruptions.			
Reliability	The ability of the system to satisfy the customer demand within accepted standards and in the amount desired.			
	Resilience	Reliability		
Events Considered	Low Probability, High Consequence Hazards	High Probability, Low Consequence Hazards		
Risk-based?	Yes	No		
Binary or continuous?	Resilience is considered a continuum, confidence is specified	Operationally, the system is reliable or not. Confidence is unspecified		
Measurement focus	Focus is on measuring impact to humans	Focus is on measuring the impact to the system		

Source: (Vugrin 2017)

IOWA STATE UNIVERSITY

Extreme Weather and Power Grid

- Extreme weather events constantly threaten and damage electric power systems.
- Overhead distribution systems are vulnerable to severe weather events such as hurricanes, wind storms, heavy rain, lightning, ice, freezing rain, and snow.
- Recent years have seen an increase of weather events and outages.

IOWA STATE UNIVERSITY

Reliability Metrics

- SAIFI System Average Interruption Frequency Index Average frequency of sustained interruptions per customer: <u>Number of interrupted customers</u> Total number of customers
- SAIDI System Average Interruption Duration Index

Customer minutes of interruption or customer hours : Sum of all customer interruption durations

Total number of customers

• CAIDI - Customer Average Interruption Duration Index

Average time needed to restore service to the average customer: $\frac{\text{SAIDI}}{\text{SAIFI}}$

> These metrics reflect the system reliability, not resilience

A system can be reliable but not resilient

IOWA STATE UNIVERSITY

ECpE Department

7

Reliability Metrics (Cont.)

- Why reliability metrics cannot be directly applied to resilience?
 - 1) Undervalue the impact of large-scale events and focus on normal operating conditions;
 - 2) High standard deviation.
- Many utilities exclude major events from SAIFI and SAIDI.
- There is a need to design new metrics for resilience.

IOWA STATE UNIVERSITY

Resilience Curve

(Panteli 2017)

IOWA STATE UNIVERSITY

Resilience Curves-Real Data

- The figures show the number of interrupted customers and outages for three different events
 - Storm Alfred (October 2011)
 - Hurricane Sandy (October 2012)
 - Winter storm (November 2014)
- Storm Alfred occurred two months after Hurricane Irene

10

IOWA STATE UNIVERSITY

Resilience Metrics (1/3)

Metric	Equation	Description
Storm Average Interruption Frequency Index (STAIFI)	Total Number of Customers Interrupted Total Number of Customers Served	• STAIFI and STAIDI exhibit too much uncertainty because of their high standard deviation.
Storm Average Interruption Duration Index (STAIDI)	Total Customer Storm Interruption Minutes Total Number of Customers Served	 The metrics are static and do not represent the dynamic evolution of damage and recovery processes. Insufficient representation of the physical aspect of grids.
Estimated Time of Restoration (ETR)	Time of Outage + Estimated Recovery Time	 Difficult to estimate due to the uncertainties in the recovery process. Fails to provide a clear indication of the network's ability to withstand weather events.

IOWA STATE UNIVERSITY

Resilience Metrics (2/3)

Metric	Equation	Description			
Speed of degradation	$\frac{R_{pd} - R_0}{t_{ee} - t_{oe}}$	 This metric indicates how fast the resilience drops after an extreme event. It can be used to measure the network's ability to withstand the event, but not for recovery. 			
Amount of degradation	$R_0 - R_{pd}$	• The metric measures the initial impact of the extreme event.			
Duration of the post- disturbance degraded state	$t_r - t_{ee}$	 Indicates the quality of the initial immediate response after the event. This metric highly depends on the fault location, isolation and service restoration (FLISR) technologies being used. 			
Speed of network recovery	$\frac{R_0 - R_{pd}}{T - t_r}$	 The metric measures the quality of the response from the utility. It includes the speed of damage assessment, repair process and crew management, and power restoration operation. 			
Area of the resilience trapezoid	$\int_{t_{oe}}^{T} R(t) dt$	• This metric gives an overall indicator of the system performance.			
Resilience Level	Ro	Disturbance Progress Post-disturbance degraded state Restorative state			
t_{oe} t_{ee} t_r T Time					

IOWA STATE UNIVERSITY

Resilience Metrics (3/3)

- Measure resilience at the network-level involving both infrastructure and services (Wei 2013)
- Combine the infrastructure and service resilience metrics (Ji 2017)

$$R(t) = 1 - \frac{1}{C_0} E\{C(t; d)\}$$

$$d: a \text{ threshold on tolerable delays for recovery}$$

$$C_0: \text{ is a normalization factor}$$

> Where:

$$E\{C(t;d)\} = \int_0^{t-d} E_{S(v)} \left\{ \lambda_i^f(v|S(v)) E\{G_i(v,t)|S(v)\} \right\} dv$$

Expected state of the system S(v)

Expected disruption cost

Failure rate of the infrastructure

This metric does not include weather variables. An open issue is how to derive resilience metrics combining weather with the infrastructure and services.

IOWA STATE UNIVERSITY

Resilience Enhancement

Phases	Actions	
Long-term planning	 Infrastructure hardening Vegetation management Adding distributed energy resources (DER) Implementing smart grid technologies Automated switching devices and sensors Smart meters for situational awareness 	
Short-term pre-event preparation	 Weather forecast and damage prediction Pre-position crews Pre-allocate equipment and fuels Pre-position mobile energy sources 	
Post-event restoration	 Automatic fault isolation and service restoration Improved damaged assessment Damage location prediction Smart meters Drones Optimizing repair scheduling and crew routing Dynamic network reconfiguration Use of DERs, demand response, and microgrids for restoration 	

IOWA STATE UNIVERSITY

Our Research on Resilience

- Resilience: The ability to prepare for and adapt and recover rapidly from disruptions.
- A tri-stage robust optimization model
- · A two-stage stochastic optimization model
- · S. Ma, S. Li, Z. Wang, F. Qiu, Resilience-Oriented Distribution System Design with Decision-Dependent Uncertainty, IEEE Trans. Power Syst., 2018.
- S. Ma, L. Su, Z. Wang, F. Qiu, Resilience Enhancement of Distribution Grids Against Extreme Weather Events," IEEE Trans. Power Syst., 2018.
- S. Ma, B. Chen, Z. Wang, Resilience enhancement strategy for distribution systems under extreme weather events, IEEE Trans. Smart Grid, 2016.

- · Co-optimize distribution grid operation and crew repair
- · A. Arif, Z. Wang, J. Wang, C. Chen, "Repair and resource scheduling in unbalanced distribution systems using neighborhood search," IEEE Trans. Smart Grid, accepted, 2019.
- · A. Arif, S. Ma, Z. Wang, J. Wang, S. M. Ryan, C. Chen, "Optimizing service restoration in distribution systems with uncertain repair time and demand," IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6828-6838. Nov. 2018.
- · A. Arif, Z. Wang, J. Wang, C. Chen, "Power distribution system outage management with co-optimization of repairs, reconfiguration, and DG dispatch," IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4109-4118, Sept. 2018.

Planning

Preparation

Damage Assessment

Repair & Restoration

- Tree trimming
- DERs
- Automatic Switches
- Hardening
- Microgrids
- A. Arif, Z. Wang, C. Chen, B. Chen, A stochastic multi-commodity logistic model for disaster preparation in distribution systems, IEEE Trans. Smart Grid, accepted, 2019.

- Weather forecasting• Fault location
- Outage modelling UAVs and prediction
- Crew and equipment allocation

• A. Arif, Z. Wang, "Distribution network

Syst., Boise, ID, 2018.

outage data analysis and repair time

prediction using deep learning," IEEE Int

Conf. Probabilistic Methods Appl. Power

• Repair time prediction

- Fault isolation and service restoration
- Dispatch repair ٠ crews and repair scheduling
- Microgrid formation •
 - 15

IOWA STATE UNIVERSITY

Motivation

- Severe power outages caused by extreme weather events
 - Hurricane Irene (2011): 6.69 million customers
 - Hurricane Sandy (2012): : 8.66 million customers
 - Hurricane Irma (2017): 15 million customers
 - Cost of weather-related outages:
 \$25 to \$70 billion annually in U.S.
- The energy infrastructure is aging, inefficient, and highly vulnerable to extreme weather
- We need a resilient system that can withstand the extreme events and recover quickly after the event

IOWA STATE UNIVERSITY

Part I Pre-event Preparation

IOWA STATE UNIVERSITY

ECpE Department

17

Review – Disaster Preparation

- Few studies focused on disaster preparation in the context of power system and its infrastructure
- The previous work approached the preparation stage by dividing the electric network into different areas, with each area having a specific demand

(Wang 2004)

Ref.	Application	Method
Wang 2004	Find optimal number of depots and their locations around the power network	MILP
Coffrin 2011	Determine the number of resources to stockpile before a disaster in order to repair the power network	SMIP
Khomami 2018	Preposition repair crews before a disaster near expected damaged components	Heuristic

IOWA STATE UNIVERSITY

Review – Distribution System Restoration

- Reconfiguration: optimal reconfiguration of the distribution network with the objective of maximizing the served loads
- Reconfiguration and DG dispatch: optimal reconfiguration of the distribution network and DG operation
- Microgrids: optimal operation of microgrids for service restoration
- Repair Scheduling: repair scheduling of distribution systems' assets without considering network operations

	Model/Algorithm				
Method	MILP	Stochastic/Robust	Agent-based	Heuristic	
Reconfiguration	Butler 2018	Lee 2015	Solanki 2007	Kumar 2008	
Reconfiguration+DGs	López 2018	Chen 2016	Zidan 2012	Drayer 2018	
Microgrids	Wang 2016	Wang 2015	Zhao 2018	Hu 2017	
Repair Scheduling	Golla 2017	Xu 2007		Johns 1994	

MILP: Mixed integer linear Program

IOWA STATE UNIVERSITY

ECpE Department

19

Review: Repair and Restoration

* How do utilities schedule the repairs?

- ✤ Define priorities for the damaged components → dispatch the crews according to the priorities
- ◆ 2-Step approach for **transmission** systems (Pascal Van Hentenryck and Carlton Coffrin 2015):
 - 1. Restoration Ordering Problem: assume only one component can be repaired at each time step
 - Solved using MILP

IOWA STATE UNIVERSITY

Problem Statement

What is missing?

- An optimization strategy for disaster preparation that selects staging areas and allocates crews and equipment while considering the system's components
- A co-optimization method that jointly optimizes crew routing and distribution system operation
- Solution algorithms for solving these difficult problems

Pre-event preparation

- Choose staging locations
- Mobilize available crews and request assistance if necessary
- Obtain and allocate equipment

Post-event repair and restoration

- Coordinate tree and line crews
- Manage equipment
- Isolate damaged components
- Operate the distribution system

IOWA STATE UNIVERSITY

Summary

- Develop a two-stage stochastic program
- Use fragility models to generate scenarios
- Uncertainties: damaged components, equipment, and repair times
- Objective:
 - Minimize preparation costs and penalty over unmet demand and late repairs
- First-stage:
 - Depot selection
 - Crew and equipment allocation
- Second-stage:
 - Assign crews to damaged components

IOWA STATE UNIVERSITY

Scenario Generation (1/2)

- Assuming a hurricane is forecasted
- We generate wind speeds using lognormal distribution and hurricane model (Javanbakht 2018, Kaplan 1995)
 Bernoulli(p) = 1 with probability p

Scenario
$$s \ W_s$$
 \longrightarrow Fragility models Bernoulli \longrightarrow Failure status

Probability of failure

- Fragility models to (Ouyang 2014):
 - Calculate the probability of failure of each pole
 - Calculate probability of failure of each conductor
 - Probability of wind induced damage
 - Probability of damage due to fallen trees

IOWA STATE UNIVERSITY

ECpE Department

23

Scenario Generation (2/2)

- Calculate required equipment (poles, transformers, conductors)
- Estimate the repair times using normal distributions (Ouyang 2014)
- Identify critical components
 - Solve a MILP to identify minimum number of lines to repair
 - Minimize number of lines to be repaired while serving all critical loads $\sum_{i=1}^{n} \sum_{i=1}^{n} w_{i}$
 - Status of the line: u_k
 - Status of the load: y_i

 $\min \sum_{k \in \Omega_{DL}(s)} u_k$

subject to $y_i = 1, \forall i \in \Omega_{CD}$

subject to power operation constraints

24

IOWA STATE UNIVERSITY

Objective

• First-stage objective: minimize the costs of equipment transportation, ordering equipment and external crews, and staging depots

$$\min_{\forall d, e, \tau} \mathcal{P}_{d, e, \tau}^{TE} E_{d, e, \tau} + \sum_{\forall d, \tau} \mathcal{P}_{\tau}^{EI} EI_{d, \tau} + \sum_{\forall d} \left(\mathcal{P}^{EC} (LI_d + \mathcal{T}I_d) + \mathcal{P}_d^D \nu_d \right)$$

- Second-stage objective:
 - Minimize the costs associated with the crews. The costs of crews include labor, food, and accommodation
 - Minimize penalty costs of unmet equipment demand and time it takes to repair all components

$$\min \sum_{\forall s} \Pr(s) \left(\sum_{\forall c} \mathcal{P}_{c}^{H} H_{c,s} + \sum_{\forall d,\tau} \mathcal{P}_{\tau}^{LF} \mathcal{E}_{d,\tau,s} + \mathcal{P}^{R} (\mathcal{L}_{s}^{T} + \mathcal{L}_{s}^{L}) \right)$$

25

IOWA STATE UNIVERSITY

Constraints

First-stage constraints

- Select depots
- Transfer existing equipment/crews between depots
- Acquire new equipment/crews
- Depot capacity constraint

Second-stage constraints

- Crews are assigned to repair damaged the components
- The assignment is constrained by the distance
- Calculate working hours
- Assign equipment to the crews
- We must have enough equipment for critical components
- Calculate unmet equipment demand

IOWA STATE UNIVERSITY

Solution Methods

- The Extensive Form (EF)
 - Write down the full variable and constraint set for all scenarios
 - Attempt to solve with a commercial MIP solver
 - Best solution, but often does not work due to memory or time limits
- Progressive hedging
 - Scenario-based decomposition
 - Pros: parallelizable
 - Cons: heuristic

27

IOWA STATE UNIVERSITY

Solution Algorithm - Progressive Hedging

- Algorithm:
 - 1. Solve each scenario independently
 - 2. Find the average first-stage solution \bar{x} = $\sum_{\forall s} \Pr(s) x_s$
 - 3. Calculate penalty factor $\eta_s = \rho(x_s \bar{x})$
 - 4. Augment the penalty factor to the stochastic model and solve
 - 5. If $\sum_{\forall s} \Pr(s) ||x_s \bar{x}|| > \epsilon$ go to 2
- The algorithm terminates once all first-stage decisions x_s converge to a common \bar{x}
- The PH algorithm may experience slow convergence
- We fix some of the first-stage variables (depot selection and crew allocation) if they converge to the same values after some number of iterations

IOWA STATE UNIVERSITY

Results (1/2)

- IEEE 123-bus system
- Proposed method (SCRAP) is compared with:
 - Deterministic allocation (DA)
 - Robust stochastic optimization method (RSO) (Bozorgi-Amiri 2013)
- Main difference is in the number of equipment acquired
- The deterministic solution did not consider some of the extreme cases
- RSO favors a solution that would perform better with worst-case scenarios

PRE-EVENT PREPARATION RESULTS

		SCRAP		DA		RSO	
Staged Depots		1	4	1	4	1	4
Line Crew	/S	6	4	6	4	6	4
Tree Crew	/S	2	1	2	1	2	1
	1	10	6	10	0	15	8
	2	16	13	13	6	26	15
Equipmant	3	3	0	3	0	3	0
	4	6	2	7	1	6	3
	5	3.8 km	2 km	2.5 km	1.5 km	5 km	3 km
Costs		\$146,	766	\$117,4	443	\$183	3,371

IOWA STATE UNIVERSITY

Results (2/2)

- The wait-and-see (WS) solution is calculated to provide a lower bound
- We calculate the objective value of the stochastic model for each method by using the first-stage decisions of the different methods

Method	Objective Value	Computation Time
WS	$$513,\!170$	N/A
SCRAP-EF	$$549,\!554$	$300 { m min}$
SCRAP-PH	$$551,\!585$	$106 \min$
RSO	\$608,683	$335 \min$
ED	$$714,\!602$	$2 \min$

Restoration Phase

- To assess the devised preparation plan, we solve the repair and restoration problem with and without preparation
- A new random damage scenario is generated on the IEEE 123-bus system
- The stochastic and robust models have enough equipment, however, RSO has a large surplus

IOWA STATE UNIVERSITY

Part II Post-event Outage Management and Service Restoration

32

IOWA STATE UNIVERSITY

Distribution System Outage Management

Distribution system outage management involves utility procedures and computer-based tools to efficiently and effectively:

- Predict and prepare for outages
- Detect and locate outages
- Dispatch crews and manage equipment
- Restore the distribution system
 - isolate faults and restore the healthy sections by reconfiguring the network
- Provide feedback to affected customers

Source: https://www.nppd.com/outages/restoring-power/

IOWA STATE UNIVERSITY

Utility Practices (1/3)

- Preparation
 - Crews and staff on alert
 - Request assistance
 - Pre-storm allocation of crews and resources
- Outage Management System
 - Data from customer calls, SCADA, AMI, etc are collected
 - Determines the likely location of the trouble
- Damage assessment process
 - Damage assessors navigate to the outage locations
 - Record damage data
- Prioritizing restoration activities
 - Hazards → critical customers (e.g., hospitals) → prioritize by number of customers
- Crew Scheduling
 - Crews are assigned to different areas for large systems
 - Schedule in sequence of priority

IOWA STATE UNIVERSITY

Source: https://www.westarenergy.com/

Utility Practices (2/3)

IOWA STATE UNIVERSITY

Utility Practices (3/3)

Challenges

- Distribution systems are becoming more complex with new devices and systems. DGs and automatic switches can greatly decrease the restoration time if operated effectively.
- Managing crews, equipment, and the operation of the network is a demanding task. After an extreme event, a sudden influx of crews can overwhelm operators and storm planners.
- The recovery operation problem and repair scheduling are interdependent.
- Currently, crews are scheduled based on a priority list. If the priorities are not well defined, the schedule will not be efficient.

Improvements

- Development of advanced optimization methods to jointly optimize the recovery operation and logistic problems. An optimization process can help the operator in making critical and more informed decisions after outages.
- Design solution algorithms for the co-optimization problem to obtain a quick $_{36}$ and efficient solution

IOWA STATE UNIVERSITY
Distribution System Restoration

- Reconfiguration: optimal reconfiguration of the distribution network with the objective of maximizing the served loads.
- Reconfiguration and DG dispatch: optimal reconfiguration of the distribution network and DG operation.
- Networked Microgrids: optimal operation of interconnected individual microgrids with defined boundaries.
- > Microgrid formation: optimal operation of microgrids with dynamic boundaries.
- Repair Scheduling: repair scheduling of distribution systems' assets without considering network operations.

Method	Model/Algorithm						
	MILP	Stochastic/Robust	Agent-based	Heuristic	Other		
Reconfiguration	[3]-[5]	[6]-[7]	[8]-[10]	[12]-[14]	[15]-[17]		
Reconfiguration+DGs	[18]-[20]	[21]-[24]	[25]-[27]	[28]-[30]	[31]-[32]		
Networked Microgrids	[33]-[36]	[37]-[40]	[41]-[42]	[43]-[44]	[45]		
Microgrid Formation	[46]-[50]	[51]-[54]	[52]-[55]	[56]	[57]		
Repair Scheduling	[58]	[59]		[58]-[61]	[62]-[65]		

MILP: Mixed integer linear Program

IOWA STATE UNIVERSITY

Review: Repair and Restoration (1/3)

MILP for transmission system repair and restoration (Arab 2015)

Assumptions

- Neglect travel time
- Crews are immediately present at the damaged components
- No specific crew assignments

Model

- Transmission system operation
- Repair schedule

IOWA STATE UNIVERSITY

Review: Repair and Restoration (2/3)

- ✤ A project by Los Alamos National Lab and National ICT Australia (NICTA), Australian National University.
- ◆ 2-Step approach for **transmission** systems (Pascal Van Hentenryck and Carlton Coffrin 2015):
 - 1. Restoration Ordering Problem: assume only one component can be repaired at each time step

IOWA STATE UNIVERSITY

Solved using MILP

*

Review: Repair and Restoration (3/3)

Yushi Tan and Daniel S. Kirschen, University of Washington, 2017 (preprint).

• Assumptions

- Network is radial without switches.
- Power only from substation.
- Travel time is neglected.
- Power operation constraints are neglected.

• Method

• Solve scheduling problem (LP) to minimize the total weighted completion time under with "outtree" precedence constraint

 \rightarrow obtain priority list

• Whenever a crew is free, select among the remaining candidate lines the one with the highest priority.

40

IOWA STATE UNIVERSITY

Research Objectives

What is missing?

- A co-optimization method that jointly optimizes crew routing and distribution system operation.
- Modeling fault isolation and tree/obstacle removal before repairing the lines.
- A preparation strategy before repair and restoration to ensure a fast response.

Objectives:

- 1. Proactive response: develop a stochastic program to pre-stage and prepare human resources and equipment before extreme weather events.
- 2. Develop MILP and stochastic mixed integer linear program (SMIP) models to cooptimize repair scheduling and the recovery operation of distribution systems.
- 3. Design solution algorithms for solving the above problems.
- Pre-storm planning Post-storm repair and restoration Coordinate tree and line crews Choose staging locations Outage scenario Mobilize available crews and generation Manage Equipment Weather forecast request assistance if necessary Isolate damaged components Obtain and allocate resources and Fragility model Operate generators and switches equipment

IOWA STATE UNIVERSITY

Contributions

- A novel mathematical model for jointly optimizing the repair crew routing and distribution network operation problems is developed. The model can improve utilities' response to extreme events. Our research group is the first to develop a single mathematical model for co-optimizing crew routing and power restoration.
- A mathematical formulation is developed for fault isolation and service restoration. Isolation has been neglected in distribution system restoration studies that use mathematical programming.
- Development of efficient algorithms for solving the co-optimization problem.
 - Cluster-based decomposition
 - Priority-based decomposition
 - Hybrid mathematical programming and search algorithm
- 4 journal and 6 conference papers have been published, and 1 journal paper is under review.

IOWA STATE UNIVERSITY

Mathematical Modeling

IOWA STATE UNIVERSITY

ECpE Department

43

Problem Overview

IOWA STATE UNIVERSITY

Mathematical Model

Distribution system repair and restoration problem (DSRRP)

Assumption:

Damage assessment has been conducted: the locations are known and the repair time is estimated.

Objective

• Minimize cost of shedding loads and switching operation

$$\min \sum_{\forall t} \left(\sum_{\forall \varphi} \sum_{\forall i} (1 - y_{i,t}) \rho_i^D P_{i,\varphi,t}^D + \rho^{SW} \sum_{k \in \Omega_{SW}} \gamma_{k,t} \right)$$

Constraints

- Distribution system operations
 - \succ Power flow
 - Cold-load pickup
 - Voltage constraints
 - Reconfiguration and fault isolation constraints

• Crew routing

- > Path-flow constraints
- Start/end location
- ➤ A damaged line is repaired by one crew
- > Arrival (repair start) time
- Tree removal before line repair
- Equipment constraints

IOWA STATE UNIVERSITY

ECpE Department

45

Distribution System

- 1. Generator limits
- 2. Line limits
- 3. Node balance
- 4. Kirchhoff voltage law (Chen 2018)
 - Losses are neglected
- 5. Voltage regulators

u: status of the line

 $p_k = [1,0,1]$

for each phase

 $U = V^2$

 p_k : for line k with phases a, c,

primary and secondary winding

 a_k : the ratio between the

1 $0 \leq P_{i,\varphi,t}^{G} \leq P_{i}^{G_{max}}, \forall i,\varphi,t$ $0 \leq Q_{i,\varphi,t}^{G} \leq Q_{i}^{G_{max}}, \forall i,\varphi,t$ $\begin{aligned} &-u_{k,t}p_{k,\varphi}P_k^{K_{max}} \leq P_{k,\varphi,t}^K \leq u_{k,t}p_{k,\varphi}P_k^{K_{max}} , \ \forall k,\varphi,t \\ &-u_{k,t}p_{k,\varphi}Q_k^{K_{max}} \leq Q_{k,\varphi,t}^K \leq u_{k,t}p_{k,\varphi}Q_k^{K_{max}} , \ \forall k,\varphi,t \end{aligned}$ $\mathbf{3} \boxed{\begin{array}{c} \sum_{\forall k \in K(.,i)} P_{k,\varphi,t}^{K} + P_{i,\varphi,t}^{G} = \sum_{\forall k \in K(i,.)} P_{k,\varphi,t}^{K} + P_{i,\varphi,t}^{L}, \forall i, \varphi, t \\ \sum_{\forall k \in K(.,i)} Q_{k,\varphi,t}^{K} + Q_{i,\varphi,t}^{G} = \sum_{\forall k \in K(i,.)} Q_{k,\varphi,t}^{K} + Q_{i,\varphi,t}^{L}, \forall i, \varphi, t \end{array}}$ $\begin{aligned} & \boldsymbol{U}_{j,t} - \boldsymbol{U}_{i,t} + \bar{\boldsymbol{Z}}_k \boldsymbol{S}_k^* + \bar{\boldsymbol{Z}}_k^* \boldsymbol{S}_k \leq (2 - u_{k,t} - \boldsymbol{p}_k) \boldsymbol{M}, \forall k \in \Omega_L \backslash \Omega_V, t \\ & \boldsymbol{U}_{j,t} - \boldsymbol{U}_{i,t} + \bar{\boldsymbol{Z}}_k \boldsymbol{S}_k^* + \bar{\boldsymbol{Z}}_k^* \boldsymbol{S}_k \geq -(2 - u_{k,t} - \boldsymbol{p}_k) \boldsymbol{M}, \forall k \in \Omega_L \backslash \Omega_V, t \end{aligned}$ 5 $-(2 - u_{k,t} - \boldsymbol{p}_k)M \leq \boldsymbol{a}_k^2 \boldsymbol{U}_{j,t} - \boldsymbol{U}_{i,t}, \forall k \in \Omega_V, t$ $\boldsymbol{a}_k^2 \boldsymbol{U}_{j,t} - \boldsymbol{U}_{i,t} \leq (2 - u_{k,t} - \boldsymbol{p}_k)M, \forall k \in \Omega_V, t$

IOWA STATE UNIVERSITY

Cold-Load Pickup

- Cold load pickup (CLPU) is the well-known problem defined as excessive inrush current drawn by loads when the distribution circuits are re-energized after extended outages.
- The typical behaviour of CLPU can be represented using a delayed exponentially decaying function.
- We use two blocks to provide a conservative approach and guarantee the supply-load balance (Liu, PSERC 2009).

$$\begin{split} P_{i,\varphi,t}^{L} &= y_{i,t} P_{i,\varphi,t}^{D} + (y_{i,t} - y_{i,\max(t-\lambda,0)}) P_{i,\varphi,t}^{U}, \; \forall i,\varphi,t \\ Q_{i,\varphi,t}^{L} &= y_{i,t} Q_{i,\varphi,t}^{D} + (y_{i,t} - y_{i,\max(t-\lambda,0)}) Q_{i,\varphi,t}^{U}, \; \forall i,\varphi,t \end{split}$$

- λ : number of time steps required for the load to return to normal condition.
- If a load goes from a de-energized state y = 0, to an energized state y =1, it will go back to normal condition after λ.

IOWA STATE UNIVERSITY

Voltage Regulator

- Voltage regulator with variable tap setting
- Voltage on the secondary side = $a \times$ voltage on the primary
- The standard voltage regulator provides ± 10 % adjustment in thirty-two 0.625 % steps
- $a = [1 + 0.00625 \times Tap] \rightarrow U_i = [1 + 0.00625 \times Tap]^2 U_i$
- Tap = -16, -15,, 16
- Define variable $\tau \in \{0,1\}^{33}$, where $\tau_1 = 1 \rightarrow Tap = -16$
- $r = a^2 = [0.8100, 0.8213, ..., 1.2100]$
- Exact linear constraints

 $-M(1-\tau_p) + r_p U_i \le U_j \le r_p U_i + M(1-\tau_p), \forall \text{ voltage regulators, } p \in \{1..33\}$

• Example: if a^2 is desired to be 0.81, then $\tau_p = 1$, if p = 1

$$0.81 \ U_i \le U_j \le 0.81 \ U_i$$

• Simplified constraint

$$0.81 U_i \le U_j \le 1.21 U_i$$

48

IOWA STATE UNIVERSITY

Reconfiguration

- 1. Radiality constraints (for radial networks) $\sum_{k \in \Omega_{K(l)}} u_{k,t} \le |\Omega_{K(l)}| - 1, \forall l, t$
- 2. Count switching operations

$$\gamma_{k,t} \ge u_{k,t} - u_{k,t-1}, \forall k \in \Omega_{SW}, t$$

$$\gamma_{k,t} \geq u_{k,t-1} - u_{k,t}, \forall k \in \Omega_{SW}, t$$

- 3. Fault Isolation:
 - Force the voltage to be zero on damaged lines
 - The voltage propagates through KVL until a CB/switch stops the propagation

 χ : outage status of bus $\Omega_{K(l)}$: set of lines in loop l Ω_{DK} : set of damaged lines γ : Binary parameter equals one if a switch changes its status

IOWA STATE UNIVERSITY

Crew Routing (1/2)

Vehicle routing problem (VRP)

- 1. Starting and ending locations
- 2. Path-flow constraint
- 3. A damaged component is visited only once by a line crew and a tree crew (if required)

50

IOWA STATE UNIVERSITY

Crew Routing (2/2)

1. Calculate arrival time

 $Arrival_n = Arrival_m + Travel_{mn} + Repair_m$

- 2. Tree crews must finish before the line crews start repairing
- 3. Set arrival time = 0 (empty) if a crew does not visit a component
- 4. Crews must have enough equipment to repair the components
- 5. Each crew has a capacity
- 6. Equipment are used/picked up as the crews travel between components

Equipment on hand = equipment at previous location – equipment used

6

7. The equipment is taken from the depot/warehouse

 α : arrival time

T: repair time

- tr: travel time
- *Res^C*: number of resources a crew takes from a depot
- Res^{D} : number of resources in the depot
- Cap^r : capacity required to carry an equipment
- Cap^{C} : capacity of the crew
- *E*: number of resources a crew has at location

```
R: required resources to repair a damaged component
```

$$1 \qquad \alpha_{m,c} + \mathcal{T}_{m,c} + tr_{m,n} - (1 - x_{m,n,c}) M \leq \alpha_{n,c} \\ \forall m \in N \setminus \{\phi_c^1\}, n \in N \setminus \{\phi_c^0, m\}, c$$

$$2 \qquad \sum_{c \in C^L} \alpha_{m,c} \geq \sum_{c \in C^T} \alpha_{m,c} + \mathcal{T}_{m,c} \sum_{\forall n \in N} x_{m,n,c}, \forall m \in \Omega_{DT} \\ 3 \qquad 0 \leq \alpha_{m,c} \leq M \sum_{n \in N} x_{n,m,c}, \forall m \in N \setminus \{\phi_c^0, \phi_c^1\}, c$$

$$4 \qquad \sum_{\forall n \in N} x_{n,m,c} \mathcal{R}_{m,r} \leq E_{c,m,r}, \forall m, r, c \in C^L \\ 5 \qquad \sum_{\forall r} Cap_r^R E_{c,m,r} \leq Cap_c^C, \forall m, c \in C^L \\ - M(1 - x_{m,n,c}) \leq E_{c,m,r} - \mathcal{R}_{m,r} - E_{c,n,r} \leq M(1 - x_{m,n,c}), \\ \forall m \in N \setminus \{\phi_c^1\}, n \in N \setminus \{\phi_c^0, m\}, c \in C^L, r \\ - M(1 - x_{w,n,c}) \leq E_{c,w,r} + Res_{c,w,r}^C - E_{c,n,r} \leq M(1 - x_{w,n,c}), \\ \forall w, n \in N \setminus \{\phi_c^0, \phi_c^1, w\}, c \in C^L, r \end{cases}$$

$$M(1 - x_{\phi_{c}^{0}, n, c}) \leq Res_{c, \phi_{c}^{0}, r}^{C} - E_{c, n, r} \leq M(1 - x_{\phi_{c}^{0}, n, c}), \forall n \in N \setminus \{\phi_{c}^{0}\}, c \in C^{L}, r$$

$$7 \qquad Res_{w, r}^{D} \geq \sum_{\forall c \in C^{L}, \phi_{c}^{0} = w} Res_{c, \phi_{c}^{0}, r}^{C} + \sum_{\forall c \in C^{L}} Res_{c, w, r}^{C}, \forall w, r \qquad 51$$

IOWA STATE UNIVERSITY

Connecting Operation and Routing

- When can we operate the component?
 - 1. Define binary variable *f* which equals 1 once the line is repaired
 - 2. Calculate the restoration time (Arrival time + Repair time)
 - 3. Set the status of the line $(u_{k,t})$ to 1 once the line is repaired

$$\sum_{\forall t} f_{m,t} = 1 , \ \forall m \in \Omega_D$$
$$\sum_{\forall t} t f_{m,t} \ge \sum_{\forall c} (\alpha_{m,c} + \mathcal{T}_{m,c} \sum_{\forall n \in N} x_{m,n,c}), \forall m \in \Omega_D$$
$$u_{m,t} = \sum_{\tau=1}^t f_{m,\tau} , \ \forall m \in \Omega_{DL}, t$$

52

IOWA STATE UNIVERSITY

Challenges

- VRP is NP-hard, obtaining the optimal solution for large cases is very challenging.
- VRP is commonly solved using heuristic methods.
- Combining VRP with distribution system operation highly increases the complexity.
- Large number of damages:
 - → Routing becomes extremely difficult
 - E.g. 30 damaged components and 10 crews:

 $x_{m,n,c} \rightarrow 30 \times 30 \times 10 =$

 \rightarrow 9000 integer variables for routing

only

Computation time is critical!

53

IOWA STATE UNIVERSITY

Proposed Solution Algorithms

- Direct method
 - Use commercial solvers (e.g., CPLEX, GUROBI) to solve the mathematical model
- Priority-based
- Cluster-based (C-DSRRP)
- Assignment-based (A-DSRRP)
- A-DSRRP \rightarrow Neighborhood Search

IOWA STATE UNIVERSITY

Priority-based

- The goal of this method is to mimic the approach used in practice
- Define the priority of the lines
 - 1. Repair lines connected to high-priority customers.

Weight factor $W_1 = 10$

2. Repair 3-phase lines.

Weight factor $W_2 = 5$

- 3. Repair single phase lines and individual customers. Weight factor $W_3 = 1$
- Identify the lines that must be repaired to restore high-priority customers.
 - min{(number of lines to repair)| s.t. operation constraints}
- Solve the crew routing problem
 - min{ $(\sum_{\forall p} \sum_{k \in L_p} \sum_{c \in C^L} W_p \alpha_{c,k})$ s.t. routing constraints}

 L_p :set of lines to repair with priority p

IOWA STATE UNIVERSITY

ECpE Department

55

Cluster-based

- Cluster the damaged components to depots.
 - min {(distance between depots and components)| s.t. resource constraint}
- C-DSRRP
 - Solve DSRRP with the crews routed based on the clusters.
- > VRP problem \rightarrow Multi-VRP subproblems

IOWA STATE UNIVERSITY

Assignment-based

- Assign the damaged components to crews.
 - min {(distances between components that are assigned to the crews)|
 - s.t. resource constraint and assignment constraints}
- A-DSRRP
 - Solve DSRRP with the crews routed based on the assignments.
- > VRP problem \rightarrow Multi-TSP subproblems

IOWA STATE UNIVERSITY

Reoptimization (A-DSRRP → Large Neighborhood Search)

- 1. Select ss nodes (damaged components)
- 2. Remove part of the route connected to the selected components
- 3. Set rest of the route to be constant
- 4. Solve the optimization problem DSRRP (with *warm start* and limit 120 s)
- 5. Repeat until we reach the stopping criteria (increase *ss* after *count* iterations without change)
- 6. Update the route once new information is obtained

IOWA STATE UNIVERSITY

Algorithm

- Use assignment-based approach
- Subproblem I:
 - Assign the damaged components to the crews
 - Consider uncertainty of the repair times
 - Solve using the extensive-form
- Subproblem II
 - Solve stochastic DSRRP with the crews dispatched to the assigned damaged components
 - Use Progressive Hedging to solve the stochastic DSRRP model

IOWA STATE UNIVERSITY

Test Case

- Modified IEEE 123-bus distribution feeder.
- 7 dispatchable DGs and 18 new switches are installed.
- Loads at buses 30, 48, 49, 53, 65, and 76 are critical loads.
- 3 depots, 6 line crews, and 4 tree crews.
- 14 damaged lines.
- Repair times
 - Intensity of the damage is represented by the repair time.
 - Repair time is generated using a truncated lognormal distribution (Z. Zhu 2012).
- Time limit 3600 seconds (Van Hentenryck 2011).
- Solved using AMPL-CPLEX.

IOWA STATE UNIVERSITY

Simulation Results-Reoptimization

- Objective: \$148,185 •
- Energy served = 62,436 kWh •
- All loads are served after 9 hours ۲
- Iterations: 27 •

×10^3

180

175

170

150

145

140

0

3

Computation time: 3120 seconds •

IOWA STATE UNIVERSITY

Simulation Results-Reoptimization (Cont.)

After 2 hours

After 4 hours

62

IOWA STATE UNIVERSITY

Solution Comparison

IOWA STATE UNIVERSITY

Optimality Gap

- Using the Reoptimization solution as an initial solution (warm start), the complete DSRRP problem is solved using CPLEX.
- Out of memory after approximately 4 hours.
- Solution did not change, optimality gap is 4.28%

Nodefile size = 666	519.10 MB (46	874.73	MB aft	er comp	ression)		
244130 153069 i	infeasible	1	148185.:	1360 :	141836.3600	22545539	4.28%
244607 153442 i	infeasible	1	148185.3	1360 :	141836.3600	22580874	4.28%
244963 153719 14	46770.1280	39 1	148185.	1360	141836.3600	22612269	4.28%
245344 154013 14	4319.8784	52 1	48185	1360	141836.3600	22642396	4.28%
245688 154250 14	16310 8160	รัติ 1	48185	1360	141836 3600	22687694	4 282
246529 154880 14	14698 5096	150 1	149195	1360	141936 3600	22765300	4 28%
240327 134000 14 949949 155594		126 1	40105.	1360 .	141030.3000	22103300	4 20%
247242 100024	CULUII	4	40405.	1300 .	141030.3000	22002302	4.20%
	11030.3000	45	140105.	1360 .	141030.3000	22030400	4.28%
	15778.3120	46	148185.	1360	141836.3600	22881632	4.28%
248420 156456 14	15827.7040	42 1	148185	1360 :	141836.3600	22896153	4.28%
Elapsed time = 1167	76.98 sec. (2	903518	.04 tic	ks, tre	e = 70590.00	1 MB)	
Nodefile size = 684	146.91 MB (48)	171.65	MB aft	er comp	ression)		
249169 157107 14	41836.3600	45 1	148185.:	1360 :	141836.3600	22940872	4.28%
250130 158005 14	44808.1120	1 0 5 1	148185.:	1360 :	141836.3600	22975578	4.28%
250283 158131 14	18106.5841	52 1	148185.3	1360 :	141836.3600	22989440	4.28%
251257 159007 i	infeasible		148185.	1360	141836.3600	23051126	4.28%
251705 159381 14	13775 0800	41 1	48185	1360	141836.3600	23086397	4.28%
252218 159281 14	17645 9195	43 1	48185	1360	141836 3600	23135082	4 28%
252210 157101 14	17781 9443	65 1	149195	1360	141936 3600	23166657	4 28%
252452 157715 17	19990 E029	49 1	140105.	1260	141030.3000	22100027	4 20%
	14076.3003	70 1	40405	1300 .	44030.3000	43174477 9393007F	4.20%
253748 161107 19	11030.3000	75	148185.	1360 .	141836.3600	23237705	4.28%
254357 161627	CUTOTT		148185.	1360 .	141836.3600	23274856	4.28%
Elapsed time = 1204	11.41 sec. (2	943675	.72 tic	ks, tre	e = 72743.32	(MB)	
Nodefile size = 705	67.62 MB (49)	657.44	MB aft	er comp	ression)		
254817 161992 14	14786.0480	44 1	148185.	1360 :	141836.3600	23307683	4.28%
255650 162669 14	14792.8800	28 1	148185.:	1360 :	141836.3600	23358873	4.28%
256012 162903 14	46721.6712	56 1	148185.:	1360 :	141836.3600	23405846	4.28%
256627 163438 14	12808.8000	39 1	148185.:	1360 :	141836.3600	23440388	4.28%
256745 163527 14	12162.6720	86 1	148185.3	1360 :	141836.3600	23451502	4.28%
257371 164020 14	11897.6968	84 1	148185.	1360 :	141836.3600	23504809	4.28%
258059 164622 14	12808.8000	65 1	148185.	1360	141836.3600	23554037	4.28%
258396 164881 14	4005.7854	65 1	48185	1360	141836.3600	23598143	4.28%
259217 165522 14	14089 8707	55 1	149195	1360	141936 3600	23671598	4 282
259801 165904 14	11993 1540	Q1 1	149195	1360	141936 3600	23724151	4 28%
$E_{120000} = 100701 = 1225$	$73 \ 94 \ exc} \ (2)$	000015	69 ± 101	ko tuo	= 74055 27	20701101 7 MB/	1.20%
Nodofilo pizo - 720	13.74 SCC. 14	24021J	MD -14	NS, CPC	e - (1)JJ.2		
9E0013 16E040 14	114.13 ND 131. 17660 0046	616.47	11D AIL	er comp	141036 3600	22750000	4 20.4
237713 103740 14	17007.0010	00 1	40405.	1300 .	141030.3000	23730070	4.20%
	12000.7173	78	148185.	1360 .	141836.3600	23775437	4.28%
260911 166724 14	1893.1540	<u>БУ</u> 1	148185.3	1360 3	141836.3600	23834279	4.28%
261455 167185 14	12162.6720	38 1	148185.3	1360 :	141836.3600	23873510	4.28%
262071 167669 14	46307.5818	89 1	148185.3	1360 :	141836.3600	23925056	4.28%
262911 168410 14	12485.6800	23 1	148185.3	1360 :	141836.3600	23971510	4.28%
263452 168856 14	41836.3600	4 3 1	148185.:	1360 :	141836.3600	24014071	4.28%
263988 169269 14	18087.6400	64 1	148185.:	1360 :	141836.3600	24062484	4.28%
264770 169872	cutoff	1	148185.3	1360 :	141836.3600	24126951	4.28%
265063 170041	cutoff	1	148185	1360	141836.3600	24153287	4.28%
Elansed time = 1269	4.31 sec. (3)	ด29516	40 tic	ks. tree	e = 76841.89	(MR)	
Nodefile size = 747	200 20 MB (52	523 82	MB aft	er comp	ression)		
265279 170216 14	15802 6160	79 1	148185	1360	141836 3600	24174500	4 282
265909 170629 14	13527 5600	38	48185	1360	141836 3600	24237512	4 282
200101 110021 11	10021-0000	30 .	. 10103.		11030.3000	6 163 1316	1.20%

There may be further error information in the clone logs.

IOWA STATE UNIVERSITY

Test Case

- Modified IEEE 123-bus distribution feeder.
- 9 DGs and 23 switches
- 3 depots, 6 line crews, and 4 tree crews.
- 14 damaged lines
- The model and algorithm are implemented in AMPL, with CPLEX solver

IOWA STATE UNIVERSITY

Results: Solution Comparison

• Optimal solution is obtained by using the Reoptimization solution to warm-start CPLEX and solve the complete method

66

IOWA STATE UNIVERSITY

Results: Route Comparison

Reoptimization (optimal) route

Priority-based route

IOWA STATE UNIVERSITY

Simulation Results-Reoptimization

IOWA STATE UNIVERSITY

Results: Reoptimization

- Objective value: \$199,210
- Iterations: 21
- Computation time: 694 seconds

69

IOWA STATE UNIVERSITY

Results: DGs and Switches

- To show the importance of DGs and automatic switches, we vary the number of DGs and switches for the 14 damage case
- The best performance is obtained with the highest number of DGs and switches, as expected
- Switches are needed so that the DGs reach their full potential

	Number of Switches					
Number of DGs	23	14	7			
11	\$ 199,210	\$ 231,803	\$ 363,989			
4	\$ 223,291	\$ 289,435	\$ 388,111			
0	\$ 345,175	\$ 412,998	\$ 421,692			

70

IOWA STATE UNIVERSITY

Test Case: IEEE 8500-bus

71

IOWA STATE UNIVERSITY

Method 2: Two-Stage Stochastic MILP

- Uncertainty
 - Repair time (Zhu 2012)
 - Demand (Lu 2013)
 - Solar irradiance (Torquato 2014)
- Objective

Minimize cost of shedding loads and switching operation

- First-stage constraints
 - Dispatch repair crews
 - Equipment constraints
- Second-stage constraints
 - Distribution system operation
 - Arrival time constraints
 - Connect crews routing and power operation

IOWA STATE UNIVERSITY

ECpE Department

72
Uncertainty

- Repair time: lognormal distribution (Zhu 2012)
- Demand: truncated normal forecast error distribution (Lu 2013)
- Solar irradiance: cloud coverage level and normal distribution (Torquato 2014)

Damage	Scenario 1	Scenario 2	Scenario 3	•••	Scenario S	900
Line 1	2.71	3.61	1.97	•••	3.11	
Line 2	4.01	2.36	3.85	•••	5.11	
Line 3	1.24	3.21	1.06		4.62	<u>3</u> 500
Line 4	1.5	1.87	2.88		3.45	400 June 200
					•	
•	•	•	•	•		\$ 100
•	•	•	•	•	•	
Line D	1.68	1.84	4.69	•••	2.46	1 3 5 7 9 11 13 15 17 19 21 2.

Repair time

IOWA STATE UNIVERSITY

Stochastic DSRRP

 $\min \sum_{\forall s} \Pr(s) \sum_{\forall t} \left(\sum_{\forall \varphi} \sum_{\forall i} (1 - y_{i,t,s}) \rho_i^D P_{i,\varphi,t,s}^D + \rho^{SW} \sum_{k \in \Omega_{SW}} \gamma_{k,t,s} \right)$

$$\begin{split} &\sum_{\forall m \in N} x_{\phi_c^0,m,c} = 1, \forall c \\ &\sum_{\forall m \in N} x_{m,\phi_c^1,c} = 1, \forall c \end{split}$$

 $\sum_{\forall c \in C^L} \sum_{\forall m \in N \backslash \{n\}} x_{m,n,c} = 1, \forall n \in \Omega_{DL}$

 $\sum_{\forall c \in C^T} \sum_{\forall m \in N \setminus \{n\}} x_{m,n,c} = 1, \forall n \in \Omega_{DT}$

$$\begin{split} E^{D}_{d,\tau} &\geq \sum_{\forall c \in C^{L}, \phi^{0}_{c} = d} E^{C}_{c,\phi^{0}_{c},\tau} + \sum_{\forall c \in C^{L}} E^{C}_{c,d,\tau}, \forall d, \tau \\ &\sum_{c} Cap^{R}_{\tau} \quad CE_{c,m,\tau} \leq Cap^{C}_{c}, \forall m, c \in C^{L} \end{split}$$

 $\sum_{\forall n \in N} x_{n,m,c} \mathcal{R}_{m,\tau} \leq C E_{c,m,\tau}, \forall m, \tau, c \in C^L$

$$\begin{split} &-M(1-x_{m,n,c}) \leq CE_{c,m,\tau} - \mathcal{R}_{m,\tau} - CE_{c,n,\tau} \leq M(1-x_{m,n,c}), \\ &\forall m \in N \setminus \{\phi_c^1\}, n \in N \setminus \{\phi_c^0, m\}, c \in C^L, \tau \end{split}$$

$$-M(1 - x_{d,n,c}) \leq CE_{c,d,\tau} + E_{c,d,\tau} - CE_{c,n,\tau} \leq M(1 - x_{d,n,c}),$$

$$\forall d, n \in N \setminus \left\{\phi_{c}^{0}, \phi_{c}^{1}, d\right\}, c \in C^{L}, \tau$$

 $-M(1-x_{\phi_c^0,n,c}) \leq E_{c,\phi_c^0,\tau}^C - CE_{c,n,\tau} \leq M(1-x_{\phi_c^0,n,c}), \forall n \in N \setminus \left\{\phi_c^0\right\}, c \in C^L, \tau$

 $Q_{i,\varphi,t,s}^{L} = y_{i,t,s}Q_{i,\varphi,t,s}^{D} + (y_{i,t,s} - y_{i,\max(t-\lambda,0),s})Q_{i,\varphi,t,s}^{U}, \forall i,\varphi,t,s$ $y_{i,t+1,s} > y_{i,t,s}, \forall i,t,s$ $0 < P_{i,\varphi,t,s}^G < P_{i}^{G_{max}}, \forall i, \varphi, t, s$ $0 \leq Q_{i,\varphi,t,s}^G \leq Q_i^{G_{max}}, \forall i,\varphi,t,s$ $-u_{k,t,s}p_{k,\varphi}P_k^{K_{max}} \leq P_{k,\varphi,t,s}^K \leq u_{k,t,s}p_{k,\varphi}P_k^{K_{max}}, \ \forall k,\varphi,t,s$ $-u_{k,t,s}p_{k,\varphi}Q_k^{K_{max}} \leq Q_{k,\varphi,t,s}^K \leq u_{k,t,s}p_{k,\varphi}Q_k^{K_{max}}, \ \forall k,\varphi,t,s$ $\sum_{\forall k \in K, i, i} Q_{k, \varphi, t, s}^K + Q_{i, \varphi, t, s}^G + Q_{i, \varphi, t, s}^{PV} + Q_{i, \varphi, t, s}^{ES} + u_{i, t, s}^C Q_{i, \varphi}^C = \sum_{\forall k \in K, i} Q_{k, \varphi, t, s}^K + Q_{i, \varphi, t, s}^L , \forall i, \varphi, t, s \in \mathbb{N}$ $U_{j,t,s} - U_{i,t,s} + \bar{Z}_k S_{k,s}^* + \bar{Z}_k^* S_{k,s} \le (2 - u_{k,t,s} - p_k)M, \forall k \in \Omega_L \setminus \Omega_V, t, s$ $U_{i,t,s} - U_{i,t,s} + \bar{Z}_k S_{k,s}^* + \bar{Z}_k^* S_{k,s} \ge -(2 - u_{k,t,s} - p_k)M, \forall k \in \Omega_L \setminus \Omega_V, t, s$ $(0.9)^2 U_{i,\varphi,t,s} \le U_{i,\varphi,t,s} \le (1.1)^2 U_{i,\varphi,t,s}, \forall k \in \Omega_V, \varphi, t, s$ $\mathcal{X}_{i,t,s}U_{min} \leq U_{i,t,s} \leq \mathcal{X}_{i,t,s}U_{max}$, $\forall i, t, s$ $2u_{k,t,s} \geq \mathcal{X}_{i,t,s} + \mathcal{X}_{i,t,s}, \forall k \in \Omega_{DL}, t, s$ $u_{k,t,s} = 1, \forall k \notin \{\Omega_{SW} \cup \Omega_{DL}\}, t, s$ $\gamma_{k,t,s} \ge u_{k,t,s} - u_{k,t-1,s}, \forall k \in \Omega_{SW}, t, s$ $\gamma_{k,t,s} \ge u_{k,t-1,s} - u_{k,t,s}, \forall k \in \Omega_{SW}, t, s$ $\sum u_{k,t,s} \le |\Omega_{K(l)}| - 1, \forall l, t, s$

$$P_{i,\varphi,t,s}^{PV} = \frac{Ir_{i,t,s}}{(1000W/m^2)} \overline{P}_i^{PV}, \forall i \in \Omega_{PV} \setminus \Omega_{PV}^G, \varphi, t, s$$

$$P_{i,\varphi,t,s}^{PV} = \mathcal{X}_{i,t,s} \frac{Ir_{i,t,s}}{(1000W/m^2)} \overline{P}_i^{PV}, \forall i \in \Omega_{PV}^G, \varphi, t, s$$

 $|Q_{i,\varphi,t,s}^{PV}| \leq \sqrt{(S_i^{PV})^2 - (\hat{P}_{i,t,s}^{PV})^2}, \forall i \in \Omega_{PV} \setminus \Omega_{PV}^G, \varphi, t, s$ $|Q_{i,\varphi,t,s}^{PV}| \le \chi_{i,t,s} \sqrt{(S_i^{PV})^2 - (\hat{P}_{i,t,s}^{PV})^2}, \forall i \in \Omega_{PV}^G, \varphi, t, s$ where $\hat{P}_{i,t,s}^{PV} = \frac{Ir_{i,t,s}}{(1000W/m^2)}\overline{P}_i^{PV}$ $v_{i,\varphi,t,s}^{S} + \sum_{\substack{k \in K(i) \\ k \in \varphi,t,s}} v_{k,\varphi,t,s}^{f} = \mathcal{X}_{i,t,s} + \sum_{\substack{k \in K(i) \\ k \in \varphi,t,s}} v_{k,\varphi,t,s}^{f}, \forall i, \varphi, t, s$ $\sum \sum v_{i,\varphi,t,s}^S = 0, \forall i \in \Omega_B \backslash \{\Omega_{PV}^C \cup \Omega_G \cup \Omega_{Sub}\}, s$ $-(u_{k,t,s} \ p_{k,\varphi})M \le v_{k,\varphi,t,s}^f \le (u_{k,t,s} \ p_{k,\varphi})M, \forall k \in \Omega_K, \varphi, t, s$ $\mathcal{X}_{i,t,s} \geq y_{i,t,s}, \forall i \in \Omega_B \setminus \{\Omega_G \cup \Omega_{PV}^C \cup \Omega_{PV}^H\}, t, s$ $0 \leq P_{i,\sigma,t,s}^{ch} \leq u_{i,t,s}^{ES} \overline{P}_{i}^{ch}, \forall i \in \Omega_{ES}, \varphi, t, s$ $0 \leq P_{i,\varphi,t,s}^{dch} \leq (1 - u_{i,t,s}^{ES})\overline{P}_{i}^{dch}, \forall i \in \Omega_{ES}, \varphi, t, s$ $E_{i,t,s}^{S} = E_{i,t-1,s}^{S} + \Delta t (\eta_{c} \sum_{\forall \varphi} P_{i,\varphi,t,s}^{ch} - \frac{\sum_{\forall \varphi} P_{d,\varphi,t,s}^{dch}}{\eta_{d}}), \forall i \in \Omega_{ES}, t, s$ $\underline{E}_{i}^{S} \leq E_{i,t,s}^{S} \leq \overline{E}_{i}^{S}, \forall i \in \Omega_{ES}, t, s$ $-u_{i,t,s}^{ES}S_i^{ES} \le Q_{i,\varphi,t,s}^{ES} \le u_{i,t,s}^{ES}S_i^{ES}, \forall i \in \Omega_{ES}, \varphi, t, s$ $|(P_{i,\varphi,t,s}^{ch} + P_{i,\varphi,t,s}^{dch}) + Q_{i,\varphi,t,s}^{ES}| \le \sqrt{2}S_i^{ES}, \forall i \in \Omega_{ES}, \varphi, t, s$ $|(P_{i,\varphi,t,s}^{ch} + P_{i,\varphi,t,s}^{dch}) - Q_{i,\varphi,t,s}^{ES}| \le \sqrt{2}S_i^{ES}, \forall i \in \Omega_{ES}, \varphi, t, s$ $\alpha_{m,c,s} + ET_{m,c,s} + tr_{m,n} - (1 - x_{m,n,c}) M \le \alpha_{n,c,s} \forall m \in N \setminus \{\phi_c^1\}, n \in N \setminus \{\phi_c^0, m\}, c, s \ge 0$ $\sum_{c \in C^L} \alpha_{m,c,s} \geq \sum_{c \in C^T} \alpha_{m,c,s} + ET_{m,c,s} \underset{\forall n \in N}{\sum} x_{m,n,c}, \forall m \in \Omega_{DT}, s$ $\sum f_{m,t,s} = 1$, $\forall m \in \Omega_{DL}, s$

$$\sum_{\forall t} tf_{m,t,s} \ge \sum_{\forall c} (\alpha_{m,c,s} + ET_{m,c,s} \sum_{\forall n \in N} x_{m,n,c}), \forall m \in \Omega_{DL}, \\ 0 \le \alpha_{m,c,s} \le M \sum_{n \in N} x_{n,m,c}, \forall m \in N \setminus \{\phi_c^0, \phi_c^1\}, c, s \\ u_{m,t,s} = \sum_{\overline{t}=1}^t f_{m,\overline{t},s}, \forall m \in \Omega_{DL}, t, s \\ 74$$

IOWA STATE UNIVERSITY

ECpE Department

 $P_{i,\varphi,t}^{L} = y_{i,t}P_{i,\varphi,t}^{D} + (y_{i,t} - y_{i,\max(t-\lambda,0)})P_{i,\varphi,t}^{U}, \ \forall i,\varphi,t,s$

Stochastic vs Deterministic

- Solve the 14 damaged lines test case using:
 - Stochastic method (DS-DSRRP) \rightarrow consider different scenarios $\xi \rightarrow$ obtaine route x^S
 - Static-Reoptimizaton \rightarrow consider average scenario \rightarrow obtain route x^R
 - Dynamic-Reoptimizaton \rightarrow consider average scenario \rightarrow obtain route $x^D \rightarrow$ update if the repair time changes
- Set the routes as constant (not for the dynamic method)
- Generate a new scenario ξ_{case} for the repair times to be the actual realization and calculate the objective value

The objective value for the IEEE 123-bus system (14 damaged lines) with constant routing solutions and different scenario realizations

Case	DS-DSRRI	P (PH)	Static-Reopt	imization	Dynamic-Reoptimization			
	$\mathbf{F}(x^S, \xi_{case})$	% Gap	$\mathbf{F}(x^R, \xi_{case})$	% Gap	$\mathbf{F}(x^D, \xi_{case})$	% Gap		Optimal
1	$$256,\!104.7$	10.84%	\$241,661.9	4.59%	\$232,728.8	0.72%		231,065.4
2	\$248,671.7	6.98%	\$299,586.4	28.88%	\$245,558.6	5.64%		\$232,447.7
3	\$269,505.5	6.85%	\$291,036.7	15.38%	\$259,189.3	2.76%		\$252,235.3
4	$$251,\!256.7$	13.27%	\$268,590.5	21.08%	\$236,415.2	6.58%		\$221,828.2
5	$$240,\!549.3$	15.22%	\$246,431.5	18.04%	\$221,790.7	6.24%		\$208,772.2

IOWA STATE UNIVERSITY

ECpE Department

75

Conclusions

- Effective preparation procedures can ensure that enough equipment is present for repairing the damaged components in the network and facilitate a faster restoration process
- Co-optimizing repair and recovery operation leads to better results compared to solving the two problems separately
- Efficient repair schedule along with DGs and controllable switches limit the outage size and can decrease the restoration time
- Advanced solution algorithms are required for solving the cooptimization problem due to its complexity
- A dynamic approach where the deterministic solution is periodically updated can achieve better solutions than stochastic programming

76

IOWA STATE UNIVERSITY

Publications

Journal Papers

- 1. A. Arif, Z. Wang, J. Wang, and C. Chen, "Repair and resource scheduling in unbalanced distribution systems using neighborhood search," *IEEE Trans. Smart Grid*, Under Review.
- 2. A. Arif, Z. Wang, C. Chen, B. Chen, "A stochastic multi-commodity logistic model for disaster preparation in distribution systems," *IEEE Trans. Smart Grid*, to be published.
- 3. A. Arif, S. Ma, Z. Wang, J. Wang, S. M. Ryan and C. Chen, "Optimizing service restoration in distribution systems with uncertain repair time and demand," *IEEE Trans. Power Syst.*, vol. 33, no. 6, pp. 6828-6838, Nov. 2018.
- 4. A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo, and D. Zhao, "Load modeling a review," IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 5986-5999, Nov. 2018.
- 5. A. Arif, Z. Wang, J. Wang, and C. Chen, "Power distribution system outage management with co-optimization of repairs, reconfiguration, and DG dispatch," *IEEE Trans. Smart Grid*, vol. 9, no. 5, pp. 4109-4118, Sept. 2018.
- 6. A. Arif and Z. Wang, "Networked microgrids for service restoration in resilient distribution systems," IET Gener. Transm. Distrib., vol. 11, no. 14, pp. 3612-3619, Sep. 2017.

Conference Paper

- 1. S. Ma, S. Li, Z. Wang, A. Arif, K. Ma., "A novel MILP formulation for fault isolation and network reconfiguration in active distribution systems," *IEEE PES General Meeting*, Portland, OR, 2018, pp. 1-5.
- 2. A. Arif, Z. Wang, "Distribution network outage data analysis and repair time prediction using deep learning," *IEEE Int Conf. Probabilistic Methods Appl. Power Syst.*, Boise, ID, 2018, pp. 1-6.
- 3. A. Arif, S. Ma, Z. Wang, "Dynamic reconfiguration and fault isolation for a selfhealing distribution system," *IEEE PES Transm. Distrib. Conf. Expo.*, Denver, CO, 2018, pp. 1-5.73
- 4. A. Arif, S. Ma, Z. Wang, "Online decomposed optimal outage management after natural disasters," *IEEE PES General Meeting*, Chicago, IL, 2017, pp. 1-5.
- 5. A. Arif, S. Ma, Z. Wang, "Optimization of transmission system repair and restoration with crew routing," IEEE North Amer. Power Symp., 2016, Denver, CO, pp. 1-6.
- 6. A. Arif and Z. Wang, "Service restoration in resilient power distribution systems with networked microgrid," IEEE PES General Meeting, Boston, MA, 2016, pp. 1-5.

77

IOWA STATE UNIVERSITY

Part III Resilience-oriented Long-term Planning

ECpE Department

78

Outline

- Motivation and Introduction
- Problem Statement
- Literature Review
- Research Objectives and Contributions
- Stochastic Decision Process
- Mathematical Formulation
- Solution Algorithms
- Simulation and Results
- Conclusions and Future Work

79

Motivation: Impacts of Extreme Weather

- Example: Hurricane Irma in September 2017
 - Left 6.7 million Floridians without power-65% of all customers in Florida [1]
 - Its overall damage cost reached to approximately 50 billion [2]

IOWA STATE UNIVERSITY

Motivation: Current Situation of Distribution Systems

- Most existing distribution systems are designed and maintained for normal weather conditions
- The classic reliability principles cannot guarantee the lights on under extreme weather events
- U.S. power grids are now old and outdated
- Utilities upgrade grids based on experiences, patrols, and observations

As power engineers, how can we improve grid resilience to survive from extreme weather events?

IOWA STATE UNIVERSITY

Introduction: The Resilience of Distribution System

• A distribution system is considered to be *resilient* if it is able to anticipate, absorb, adapt to, and/or rapidly recover from a disruptive event [6].

Fig.1. A general system performance curve of a distribution system following an extreme weather event

- Event prevention stage: Resistant capability
- Damage propagation stage: Absorptive and adaptive capacity
- Restoration stage: Recovery capability

82

IOWA STATE UNIVERSITY

Introduction: The Resilience Enhancement Measures

- Two resilience goals of distribution systems [7]:
 - System adaptation (to reduce the impact of future events)
 - System survivability (to maintain an adequate functionality during and after the event)
- Resilience enhancement measures:

Resilience-Oriented Design (ROD) Measures

- Topological and structural upgrades of the utility's infrastructures
 - Upgrading distribution poles to stronger class
 - Installing automatic switches
 - Installing back-up distributed generators (DG)

Resilience-Oriented Operational (ROO) Measures

- "Smart" control-based actions
 - Network reconfiguration
 - DG rescheduling
 - Conservation voltage regulation
 - Defensive islanding
 - Microgrid-assisted control actions
 - Priority-based load shedding

IOWA STATE UNIVERSITY

Introduction: The Big Picture

- A resilient distribution system
 - Planning: pole hardening, and DG and switch installation
 - Operation: co-optimization of repair scheduling and restoration operation

• We focus on exploring *effects of ROD measures* on *system resilience* with the consideration of operation response

IOWA STATE UNIVERSITY

Problem Statement

- How to optimally apply ROD measures to prevent distribution system from extensive damages caused by extreme weather events
 - Some *spatial-temporal correlations* exist among ROD decisions, extreme weather events, and system operations
 - Occurrence, intensity and traveling path of events are *uncertain*
 - Physical infrastructure damage status are affected by both extreme weather event and ROD decisions
 - ROD decisions affect system recovery and the associated outage/repair costs
 - A *time-varying interaction* exists between structural damages and electric outage propagation
 - Difficult to capture the entire *failure-recovery-cost process* of distribution systems during and after an extreme weather event.

IOWA STATE UNIVERSITY

Literature Review

Ref	Uncertainty Consideration	Measures	Model/Algorithm
[8]	• Use a polyhedral set to represent damage uncertainty	• line hardening	• Robust optimization/column-and- constraint generation algorithm
[9]	• Use failure probabilities of distribution lines to represent damage uncertainty set	Pole hardeningVegetation managementCombination of both	• Tri-level robust optimization/greedy algorithm
[10]	• Use failure probabilities of overhead lines and underground gas pipelines to generate line damage uncertainty set	Line hardening	• Tri-level robust optimization/column-and- constraint generation algorithm
[11]	• Use fragility model to generate line damage uncertainty	Line hardeningDG placementSwitch Installation	• Two-stage stochastic program/a scenario-based variable neighborhood decomposition search algorithm
[12]	• Use fragility model to generate line damage uncertainty	 Line hardening (replace overhead line with underground line) MGs Networked MGs 	• Two-stage stochastic program/a decomposition-based heuristic algorithm
[13]	 Use fragility model to generate line damage uncertainty Model repair time uncertainty Consider load demand uncertainty 	Line hardeningDG placementSwitch Installation	 Two-stage stochastic program/Progressive hedging algorithm

IOWA STATE UNIVERSITY

Research Objective

- Develop a new modeling and solution methodology for the ROD of distribution systems against wind-induced extreme weather events
 - Develop a hybrid stochastic process with a deterministic casual structure to describe the spatio-temporal correlations of ROD decisions and uncertainties
 - Formulate a two-stage stochastic mixed-integer linear program (SMILP) to capture the impacts of ROD decisions and uncertainties on system's responses to extreme weather events
 - Design solution algorithm for solving the above problems.

87

IOWA STATE UNIVERSITY

Research Contributions

- Model a hybrid independent stochastic process with a deterministic causal structure to capture the spatiotemporal correlation among the various uncertainties and ROD decisions
 - avoid establishing the high-dimension joint distribution of uncertain variables
 - model the evolving impacts of extreme weather events on physical infrastructures
- Propose a two-stage SMILP to optimally implement multiple ROD measures considering various uncertainties, thus increasing the infrastructure strength and enabling self-healing operations
 - captures the entire failure-recovery process
 - the self-healing operation in the second stage can mimic the outage propagation with minimum service interruption
- Develop a customized DD algorithm to balance optimality and solution efficiency

ECpE Department

IOWA STATE UNIVERSITY

Stochastic Decision Process of ROD Problem

- Overview
- First-stage decisions
- Uncertainty Modeling

IOWA STATE UNIVERSITY

Overview

- ROD problem is modeled as a two-stage stochastic decision process:
 - Planner makes ROD decisions
 - The operation uncertainties are resolved during the extreme weather event
 - Operator makes the recourse decisions

90

IOWA STATE UNIVERSITY

First-Stage Decisions

- Hardening poles:
 - Strengthening vulnerable components
 - Consider 6 pole types
 - Pole stress (1 > 2 > 3 > 4 > 5 > 6)

Installing Backup DGs

٠

- Increasing adequacy of power supply
- Adding sectionalizers
 - Increasing topological flexibility
 - Can be added at both ends of a line

IOWA STATE UNIVERSITY

Uncertainty Modeling

- Consider three groups of random variables that have direct impacts on the evolution of the system operation state
 - Line damage status
 - Repair costs
 - Load demands

Fig.1. The structure of uncertainty space: independent observable random variables/processes (highlighted in red) + deterministic casual connections (parameterized by the first-stage decision).

IOWA STATE UNIVERSITY

(a) Line Damage Status Uncertainty

IOWA STATE UNIVERSITY

(b) Repair Cost Uncertainty

IOWA STATE UNIVERSITY

(c) Load Demand Uncertainty

Fig.2. load profile shape at the substation (root node)

IOWA STATE UNIVERSITY

Mathematic Formulation of ROD Problem

- Overview
- First-stage Problem
- Second-stage Problem

IOWA STATE UNIVERSITY

Overview

- Investment Stage: identify the optimal ROD decisions
- Operation Stage: achieve self-healing operation
 - need a mathematic formulation to fully model power outage propagation
 - need an analytic optimization to sectionalize a distribution network into multiple self-supplied MGs while maintaining their radial network typologies

IOWA STATE UNIVERSITY

First-Stage Formulation

$$\min C_1^I(x^h) + C_1^I(x^g) + C_1^I(x^{c_1}) + w_H \mathbb{E}_{\xi} \phi(x, \xi)$$

s.t.:

First stage ROD variables:

 x_{ij}^{h} whether hardening line (i, j) (1) or not (0) $x_{ij,i}^{c_1}$ x_{ij}^{g} whether installing DG at node i (1) or not (0)

First stage constraints:

$$\sum_{k \in \Omega_K} x_{ij,k}^h = 1, \forall (i,j) \in \Omega_B \text{ Hardening strategy limit } \sum_{i \in \Omega_N} x_i^g \leqslant N_G \text{ DG number limit}$$
$$x_{ij,n}^{c_0} + x_{ij,n}^{c_1} = x_{ij,n}^c, \forall (i,j) \in \Omega_B, n \in \{i,j\} \text{ Switch installation constraint}$$
$$\mathbb{E}_{\boldsymbol{\xi}} \phi(x, \boldsymbol{\xi}) \cong \sum_{s \in \mathcal{S}} p_r(s) \phi(x, s) \text{ The expected cost of the second stage}$$

IOWA STATE UNIVERSITY

Objective: Minimize the ROD investment cost and the expected cost of the loss of load, DG operation, and damage repair in realized extreme weather events

whether adding a sectionalizer at the end i of line (i, j) (1) or not (0)

Second-Stage Problem: Technique Outline (1)

• Model the power outage propagation (expressed by a set of constraints)

Fig.1. The illustrative example for isolating a fault

- Add a virtual node in the middle of each branch
- Apply a symmetric fault to the virtual node if the line is damaged
- Set the voltage feasible region: $\{0\} \cup [V^{\min}, V^{\max}]$
- Fully curtail a load when its voltage magnitude is zero
- Set loading limits to all branches and penalize load shedding amount in the objective ⁹⁹

IOWA STATE UNIVERSITY

Second-Stage Problem: Technique Outline (2)

- Radiality Constraints for each energized networks
 - Graph Theorem [14]: A forest of N nodes has exactly $N N_c$ edges, where N_c is the number of connected network components.
 - How to obtain N_c in the distribution system
 - Calculate N_c by counting the degree of freedom of voltage angles
 - Formulate a virtual DC optimal power flow (VDCOPF) sub-problem to obtain this degree of freedom
 - the optimal solution of this sub-problem satisfies that the virtual loads in the same energized island are nearly equally distributed at active nodes
 - each energized island has and only has an active node with zero angle
 - The radiality constraint is satisfied *iff* the number of active branches equals the total number of active nodes minus the number of active nodes with zero angles

IOWA STATE UNIVERSITY

Second-Stage Formulation

Objective

• Minimize the cost of the loss of load, DG operation, and damage repair in a realized extreme weather event given ROD decisions

$$\phi(\boldsymbol{x},s) = \min \sum_{i \in \Omega_N} \sum_{t \in \mathcal{T}_H^s} c_i^L y_{i,t}^{r,s} P_{i,t}^{L,s} \Delta t + \sum_{i \in \Omega_N} \sum_{t \in \mathcal{T}_H^s} c_i^o P_{i,t}^{g,s} \Delta t + \sum_{(i,j) \in \Omega_B} c_{ij}^{r,s} \Delta t$$

Constraints

- Distribution system operation
 - 1) Line damage status constraint
 - 2) Line repair cost constraint
 - Line's on-off status constraints (controlled by switch's on-off status)
 - 4) Line flow limits (controlled by line's on-off status)
 - 5) Linearized DistFlow equations (calculate power flow and voltage profile)
 - 6) DG capacity limits

- Fictitious faulting logic constraints (model outage propagation)
 - 1) Virtual node power injection constraints
 - 2) Voltage magnitude limits
 - 3) Load shedding ratio limit
- The minimality condition of VDCOPF sub-problem (obtain the degree of freedom of voltage angle)
- Zero Angle indicator constraint (indicating a node with zero angle)

IOWA STATE UNIVERSITY

Key Points

Information passing: Line's on-off status and DG on-off status
Second-stage problem
Outing to it to be it to be

Optimal virtual voltage angle

- Fictitious faulting logic constraints +Distribution system operation constraints in 1)-3) + Penalty cost of load shedding in objective:
 - isolate damaged lines while minimizing the de-energized network parts
 - make network constraints such as power flow automatically adapt to the topology after reconfiguration
- Radiality Constraints + Zero angle indicator constraint + VDCOPF subproblem
 - can keep each energized network radial

102

IOWA STATE UNIVERSITY

• Distribution System Operation Constraints

- 1) Line damage status constraint
- 2) Line repair cost constraint
- 3) Line's on-off status constraints
- 4) Line flow limits
- 5) Linearized DistFlow equations
- 6) DG capacity limits

Binary variables:

 $u_{ij,t}^{s}$ Line damage status $y_{ij,t}^{c,s}$ Sectionlizer on-off status $w_{ij,t}^{o,s}$ Line on-off status

 $1 \qquad u_{ij,t}^s = \sum_{k=1}^{\infty} x_{ij,k}^h \zeta_{ij,k,t}^s, \forall (i,j) \in \Omega_B, t \in \mathcal{T}_H^s$ **2** $\qquad c_{ij}^{r,s} = \sum x_{ij,k}^h \chi_{ij,k,j}^s, \forall (i,j) \in \Omega_B$ $y_{ij,t}^{c,s} \leqslant x_{ij}^{c}, \forall (i,j) \in \Omega_{B_F}, t \in \mathcal{T}_H^s$ $x_{ij}^{c} + y_{ij,t}^{c,s} + 2w_{ij,t}^{o,s} \ge 2, \forall (i,j) \in \Omega_{B_F}, t \in \mathcal{T}_H^s$ $w_{ij,t}^{o,s} + y_{ij,t}^{c,s} \le 1, \forall (i,j) \in \Omega_{B_F}, t \in \mathcal{T}_H^s$ 3 $y_{iit}^{c,s}, w_{iit}^{o,s} \in \{0,1\}, \forall (i,j) \in \Omega_{B_F}, t \in \mathcal{T}_H^s$ $\begin{bmatrix} -w_{ij,t}^{o,s} & \hline x_{ij}^{c} & y_{ij,t}^{c,s} & w_{ij,t}^{o,s} & x_{ij}^{c} & y_{ij,t}^{c,s} & w_{ij,t}^{o,s} \\ -w_{ij,t}^{o,s} & \hline 0 & 0 & 1 & 1 & 0 & 1 \\ \end{bmatrix} \in \mathcal{T}_{H}^{s}$ N/A 0 $\sum_{\{j \mid (i,j) \in \Omega_{B_F}\}} \frac{\{N/A: \text{ the case should be infeasible.} \}}{\sum_{i,j,t} Q_{ij,t}^s = Q_{i,t}^{g,s} - (1 - y_{i,t}^{r,s})Q_{i,t}^L, \forall i \in \Omega_N, t \in \mathcal{T}_H^s}$ $5 \qquad \sum_{\substack{\{j \mid (i,j) \in \Omega_{B_{F}}\}\\\{j \mid (i,j) \in \Omega_{B_{F}}\}\\ V_{i,t}^{s} - \frac{R_{ij}^{e} P_{ij,t}^{s} + X_{ij}^{e} Q_{ij,t}^{s}}{V_{0}} - (1 - w_{ij,t}^{o,s}) M_{1} \leqslant V_{j,t}^{s} \leqslant V_{i,t}^{s} - \sum_{j=1}^{N} \frac{R_{ij}^{e} P_{ij,t}^{s} + X_{ij}^{e} Q_{ij,t}^{s}}{V_{0}} - (1 - w_{ij,t}^{o,s}) M_{1} \leqslant V_{j,t}^{s} \leqslant V_{i,t}^{s} - \sum_{j=1}^{N} \frac{R_{ij}^{e} P_{ij,t}^{s} + X_{ij}^{e} Q_{ij,t}^{s}}{V_{0}} - (1 - w_{ij,t}^{o,s}) M_{1} \leqslant V_{j,t}^{s} \leqslant V_{i,t}^{s} - \frac{R_{ij}^{e} P_{ij,t}^{s} + X_{ij}^{e} Q_{ij,t}^{s}}{V_{0}} - (1 - w_{ij,t}^{o,s}) M_{1} \leqslant V_{j,t}^{s} \leqslant V_{i,t}^{s} - \frac{R_{ij}^{e} P_{ij,t}^{s} + X_{ij}^{e} Q_{ij,t}^{s}}{V_{0}} - (1 - w_{ij,t}^{o,s}) M_{1} \leqslant V_{j,t}^{s} \leqslant V_{i,t}^{s} - \frac{R_{ij}^{e} P_{ij,t}^{s} + X_{ij}^{e} Q_{ij,t}^{s}}{V_{0}} - (1 - w_{ij,t}^{o,s}) M_{1} \leqslant V_{ij}^{s} \leqslant V_{ij}^{s} - \frac{R_{ij}^{e} P_{ij}^{s} + X_{ij}^{e} Q_{ij,t}^{s}}{V_{0}} - \frac{R_{ij}^{e} P_{ij}^{s} + \frac{R_{ij}^{e} P_{ij}^{s}}{V_{0}} - \frac{R_{i$ $\frac{R_{ij}^e P_{ij,t}^s + X_{ij}^e Q_{ij,t}^s}{V_0} + (1 - w_{ijt}^{o,s}) \mathfrak{M}_1, \forall i \in \Omega_{N_F}, t \in \mathcal{T}_H^s$ $\mathbf{6} \quad \begin{bmatrix} 0 \leqslant P_{i,t}^{g,s} \leqslant x_i^g P_i^{g,\max}, \forall i \in \Omega_N, t \in \mathcal{T}_H^s \\ 0 \leqslant Q_{i,t}^{g,s} \leqslant x_i^g Q_i^{g,\max}, \forall i \in \Omega_N, t \in \mathcal{T}_H^s \end{bmatrix}$ 105

IOWA STATE UNIVERSITY

- Fictitious Faulting Logic Constraints
- 1) Virtual node power injection constraints
- 2) Voltage magnitude limits
- 3) Load shedding ratio limit
- Radiality constraints
 - 1) Radiality constraint
 - 2) Active branch identification constraint
- Zero angle indicator constraint

$$w_{i,t}^{a,s} - 1 \leqslant \frac{1}{2|\Omega_{N_F}|} (\mu_{d,i,t}^s - 1 + \varepsilon_3) \leqslant w_{i,t}^{a,s}, \forall i \in \Omega_N, t \in \mathcal{T}_H^s$$

$$\begin{aligned}
\mathbf{1} \begin{bmatrix}
-u_{ij,t}^{s} M_{2} \leqslant \sum_{k \in \{i,j\}} P_{kf_{ij},t}^{s} + \varepsilon_{1} \cdot V_{i,t}^{s} \leqslant u_{ij,t}^{s} M_{2}, \forall (i,j) \in \Omega_{B}, f_{ij} \in \Omega_{N_{F}}, t \in \mathcal{T}_{H}^{s} \\
-u_{ij,t}^{s} M_{2} \leqslant \sum_{k \in \{i,j\}} Q_{kf_{ij,t}}^{s} \leqslant u_{ij,t}^{s} M_{2}, \forall (i,j) \in \Omega_{B}, f_{ij} \in \Omega_{N_{F}}, t \in \mathcal{T}_{H}^{s} \\
\mathbf{2} \begin{bmatrix}
w_{i,t}^{m,s} V_{i}^{\min} \leqslant V_{i,t}^{s} \leqslant w_{i,t}^{m,s} V_{i}^{\max}, \forall i \in \Omega_{N_{F}}, t \in \mathcal{T}_{H}^{s} \\
u_{ij,t}^{s} + w_{fij,t}^{m,s} \leqslant 1, \forall (i,j) \in \Omega_{B}, f_{ij} \in \Omega_{F}, t \in \mathcal{T}_{H}^{s} \\
w_{i,t}^{m,s} \in \{0,1\}, \forall i \in \Omega_{N_{F}}, t \in \mathcal{T}_{H}^{s}
\end{aligned}$$

$$\begin{aligned}
\mathbf{3} \begin{bmatrix}
1 - w_{i,t}^{m,s} \leqslant y_{i,t}^{r,s} \leqslant 1, \forall i \in \Omega_{N}, t \in \mathcal{T}_{H}^{s} \\
u_{ij,t}^{s} + w_{i,t}^{m,s} - 1 \leqslant w_{ij,t}^{b,s} \leqslant 0.5 w_{ij,t}^{o,s} + 0.5 w_{i,t}^{m,s}, \forall i \in \Omega_{N_{F}}, (i,j) \in \Omega_{B_{F}}, t \in \mathcal{T}_{H}^{s} \\
w_{i,t}^{a,s}, w_{ij,t}^{b,s} \in \{0,1\}, \forall i \in \Omega_{N_{F}}, (i,j) \in \Omega_{B_{F}}, t \in \mathcal{T}_{H}^{s}
\end{aligned}$$

Binary variables: $w_{i,t}^{m,s}$ active node $w_{i,t}^{b,s}$ active branch $w_{i,t}^{a,s}$ node with zero voltage angle

IOWA STATE UNIVERSITY

The Minimality Condition of VDCOPF Subproblem

• To realize that a connected network component (healthy MG) has one and only one degree of freedom of voltage angle under the condition of full DC power flow equations

$$\begin{pmatrix} \mathcal{P}_{L,t}^{s,\star}, \mathcal{P}_{l,t}^{s,\star}, \theta_{t}^{s,\star} \end{pmatrix} = \underset{\mathcal{P}_{L,t}^{s}, \mathcal{P}_{l,t}^{s}, \theta_{t}^{s}}{\operatorname{arg\,min}} \left\{ \begin{aligned} \sum_{i \in \Omega_{N_{F}}} (\theta_{i,t}^{s} + \frac{\alpha_{L}}{2} (\mathcal{P}_{L,i,t}^{s})^{2}) \\ a : -(1 - w_{ij,t}^{o,s}) M_{3} \leqslant \mathcal{P}_{ij,t}^{s} - S_{0} B_{ij}^{'} \left(\theta_{i,t}^{s} - \theta_{j,t}^{s}\right) \\ \leqslant (1 - w_{ij,t}^{o,s}) M_{3}, \forall (i,j) \in \Omega_{B_{F}} \\ b : -w_{ij,t}^{o,s} M_{3} \leqslant \mathcal{P}_{ij,t}^{s} \leqslant w_{ij,t}^{o,s} M_{3}, \forall (i,j) \in \Omega_{B_{F}} \\ s.t. \quad c : \sum \mathcal{P}_{ij,t}^{s} - \mathcal{P}_{i,t}^{g,s} + \mathcal{P}_{L,i,t}^{s} = 0, \forall i \in \Omega_{N_{F}} \\ \{j | (i,j) \in \Omega_{B_{F}} \} \\ d : -\theta_{i,t}^{s} \leq 0, \quad \forall i \in \Omega_{N_{F}} \\ e : -\mathcal{P}_{L,i,t}^{s} \leq 0, \quad \forall i \in \Omega_{N_{F}} \\ \forall t \in \mathcal{T}_{H}^{s} \end{aligned}$$

• KKT optimality condition: Primal feasibility

$$\begin{split} - \big(1 - w_{ij,t}^{o,s}\big) M_3 &\leqslant \mathcal{P}_{ij,t}^{s,\star} - S_0 B_{ij}^{'} \left(\theta_{i,t}^{s,\star} - \theta_{j,t}^{s,\star}\right) \leqslant \big(1 - w_{ij,t}^{o,s}\big) M_3, \\ &\forall (i,j) \in \Omega_{B_F}, t \in \mathcal{T}_H^s \\ - w_{ij,t}^{o,s} M_3 &\leqslant \mathcal{P}_{ij,t}^{s,\star} \leqslant w_{ij,t}^{o,s} M_3, \forall (i,j) \in \Omega_{B_F}, t \in \mathcal{T}_H^s \\ &\sum_{\substack{\sum \\ \{j \mid (i,j) \in \Omega_{B_F}\}}} \mathcal{P}_{ij,t}^{s,\star} - P_{i,t}^{g,s} + \mathcal{P}_{L,i,t}^{s,\star} = 0, \forall i \in \Omega_{N_F}, t \in \mathcal{T}_H^s \end{split}$$

Stationarity

$$\frac{\partial \mathcal{L}}{\partial \mathcal{P}_{L,i,t}^{s,\star} : \alpha_L \mathcal{P}_{L,i}^{s,\star} + \lambda_{c,i,t}^s - \mu_{e,i,t}^s = 0, \forall i \in \Omega_{N_F}, t \in \mathcal{T}_H^s }{\partial \mathcal{L}} \frac{\partial \mathcal{P}_{ij,t}^{s,\star} : -\lambda_{a,ij,t}^s + \lambda_{b,ij,t}^s + \lambda_{c,i,t}^s - \lambda_{c,j,t}^s = 0, }{\forall (i,j) \in \Omega_{B_F}, t \in \mathcal{T}_H^s } \frac{\partial \mathcal{L}}{\partial \theta_{i,t}^{s,\star} : \sum_{\{j \mid (i,j) \in \Omega_{B_F}\}} \lambda_{a,ij,t}^s B_{ij} S_0 + 1 - \mu_{d,i,t}^s = 0, }{\forall i \in \Omega_{N_F}, t \in \mathcal{T}_H^s } }$$

Complementary slackness and dual feasibility

$$\begin{array}{ll} 0 \leqslant \mu_{d,i,t}^s \perp \theta_{i,t}^{s,\star} \geqslant 0, & \forall i \in \Omega_{N_F}, t \in \mathcal{T}_H^s \\ 0 \leqslant \mu_{e,i,t}^s \perp \mathcal{P}_{L,i,t}^{s,\star} \geqslant 0, & \forall (i,j) \in \Omega_{N_F}, t \in \mathcal{T}_H^s \end{array}$$

On-off line status

$$- (1 - w_{ij,t}^{o,s}) M_4 \leqslant \lambda_{a,ij,t}^s \leqslant (1 - w_{ij,t}^{o,s}) M_{\underline{4}} \forall i \in \Omega_{N_F}, t \in \mathcal{T}_H^s \\ - w_{ij,t}^{o,s} M_4 \leqslant \lambda_{b,ij,t}^s \leqslant w_{ij,t}^{o,s} M_4, \quad \forall i \in \Omega_{N_F}, t \in \mathcal{T}_H^s$$

IOWA STATE UNIVERSITY

Dual Decomposition Algorithm

A Compact Notation Form of ROD Model

$$z = \min\left\{ \boldsymbol{c}^{\top} \boldsymbol{x} + \sum_{s \in S} p_r(s) \boldsymbol{q}^{\top} \boldsymbol{y}^{R,s} : (\boldsymbol{x}, \boldsymbol{y}^{R,s}) \in \boldsymbol{K}^s, \forall s \in S \right\}$$

where $\boldsymbol{K}^s = \left\{ (\boldsymbol{x}, \boldsymbol{y}^{R,s}) : \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}, \boldsymbol{T}(s) \boldsymbol{x} + \boldsymbol{W}(s) \boldsymbol{y}^{R,s} = \boldsymbol{h}(s), \boldsymbol{x} \in \{0, 1\}, \boldsymbol{y}^{R,s} = (\boldsymbol{y}^s_B, \boldsymbol{y}^s_C), \boldsymbol{y}^s_B \in \{0, 1\}, \boldsymbol{y}^s_C \ge 0 \right\}, \forall s \in \mathcal{S}$

• To induce a scenario-based decomposable structure, the copies of the first-stage variables x are introduced to create the following reformulation

$$\boldsymbol{z} = \min\left\{\sum_{s \in S} p_r(s)(\boldsymbol{c}^{\top} \boldsymbol{x}^s + \boldsymbol{q}^{\top} \boldsymbol{y}^{R,s}) : \boldsymbol{x}^1 = \dots = \boldsymbol{x}^{|S|}, (\boldsymbol{x}^s, \boldsymbol{y}^{R,s}) \in \boldsymbol{K}^s, \forall s \in S\right\}$$

• The Lagrangian relaxation with respect to the nonanticipativity constraint

$$L(\boldsymbol{\mu}) = \sum_{s \in \mathcal{S}} L_s(\boldsymbol{\mu}^s) = \sum_{s \in \mathcal{S}} \min_{\boldsymbol{x}^s, \boldsymbol{y}^{R,s}} \left\{ p_r(s)(\boldsymbol{c}^{\top} \boldsymbol{x}^s + \boldsymbol{q}^{\top} \boldsymbol{y}^{R,s}) + \boldsymbol{\mu}^s \boldsymbol{x}^s : (\boldsymbol{x}^s, \boldsymbol{y}^{R,s}) \in \boldsymbol{K}^s \right\}$$

• The lower bound of the Lagrangian relaxation:

$$z_{LD} = \max_{\boldsymbol{\mu}} \left\{ \sum_{s \in \mathcal{S}} L_s(\boldsymbol{\mu}^s) : \sum_{s \in \mathcal{S}} \boldsymbol{\mu}^s = 0 \right\}$$

IOWA STATE UNIVERSITY

Case Study

TABLE II THE INVESTMENT COST OF DIFFERENT ROD METHODS

#No.	Methods	Cost(\$)
1	Upgrading pole class	6,000/pole
2	Adding transverse guys to pole	4,000/pole
3	The combination of upgrading and guying pole	10,000/pole
3	Installing a natural gas-fired CHPs as DG	1,000/kW
	with 400kW capacity	
4	Adding an automatic sectionlizer	15,000

*Assume the span of two consecutive poles is 150 ft.

- The IEEE 123-bus system is mapped into a coastal city in Texas.
- The repair cost of a single pole for 6 pole types is assumed to be the same $\chi_{ij,1}^p = \cdots = \chi_{ij,6}^p = \4000
- Consider the budget limitation, the total number of backup DGs is limited to be 5
- The total investment cost is \$5, 048,000

IOWA STATE UNIVERSITY

Fig.1. The optimal ROD methods implementation

109

Simulating A Pole Damage Status in A Hurricane

IOWA STATE UNIVERSITY
Case1: Comparison with and without ROD

• Compare the second stage cost from the hurricane hits the system to the point when all damaged lines are repaired

Fig.1. The second stage cost comparison with and without ROD under different scenarios

• The expected second-stage cost with optimal ROD is 8.93% of that without ROD

IOWA STATE UNIVERSITY

Case1: Comparison with and without ROD

• Compare the system resilience by the resilience curve, which can be expressed by the percentage of power-served (POPS(*t*)):

Fig.1. The system resilience curve comparison

- The system with optimal ROD has stronger surviving ability to withstand hurricane and faster recovery
- DGs and automatic sectionalizers can contribute to mitigating the hurricane's impact on the system

IOWA STATE UNIVERSITY

Case2: The Self-healing Operation Case

• To validate the novelty of our MILP formulation strategy to solve the challenges of self-healing operation

Fig.2. System's self-healing operation at
$$t = 21$$

113

IOWA STATE UNIVERSITY

Conclusions

- A new modeling and solution methodology for resilience-oriented design (ROD) of power distribution systems against wind-induced climatic hazards is proposed
 - The spatial-temporal correlations among ROD decisions, uncertainty space, and system operations during and after extreme weather events are well explored and established
 - A two-stage stochastic mixed-integer model is proposed with the objective to minimize the investment cost in the first-stage and the expected costs of the loss of loads, repairs and DG operations in the second stage.
 - A scenario-based dual composition algorithm is developed to solve the proposed model
 - Numerical studies on the 123-bus distribution system demonstrate the effectiveness of optimal ROD on enhancing the system resilience

114

IOWA STATE UNIVERSITY

Future Work

- We focus on the resource allocation problem ahead of an upcoming extreme weather event
 - consider the uncertainty of the damaged line status, solar irradiance, load demand, and crew repair time
 - explore a tractable measure to model the risk associated with grid components' damages caused by extreme weather events

115

IOWA STATE UNIVERSITY

Publications

Journal Papers

- 1. S. Ma, S. Li, Z. Wang, and F. Qiu, "Resilience-Oriented Distribution System Design with Decision-Dependent Uncertainty," *IEEE Transactions on Power System*, accepted, 2019.
- 2. S. Ma, Z. Wang, and L. Tesfatsion, "Swing Contracts with Dynamic Reserves for Flexible Service Management," *IEEE Transactions on Power System*, accepted, 2018
- 3. S. Ma, L. Su, Z. Wang, and F. Qiu, "Resilience Enhancement of Distribution Grids Against Extreme Weather Events," *IEEE Transactions on Power System*, vol. 33, no. 5, pp. 4842-4853, Sept. 2018.
- 4. A. Arif, S. Ma, Z. Wang, J Wang, S. M. Ryan, and C. Chen, "Optimizing Service Restoration in Distribution Systems With Uncertain Repair Time and Demand," *IEEE Transactions on Power System*, vol. 33, no. 6, pp. 6828-6838, Nov. 2018.
- 5. S. Ma, B. Chen and Z. Wang, "Resilience Enhancement Strategy for Distribution Systems Under Extreme Weather Events," in *IEEE Transactions on Smart Grid*, vol. 9, no. 2, pp. 1442-1451, March 2018.

Conference Paper

- 1. S. Ma, N. Carrington, A. Arif, and Z. Wang, "Resilience Assessment of Self-healing Distribution Systems Under Extreme Weather Events", *IEEE PES General Meeting*, accepted, 2019.
- 2. S. Ma, S. Li, Z. Wang, A. Arif, and K. Ma., "A novel MILP formulation for fault isolation and network reconfiguration in active distribution systems," *IEEE PES General Meeting*, Portland, OR, 2018, pp. 1-5.
- 3. A. Arif, S. Ma, and Z. Wang, "Dynamic reconfiguration and fault isolation for a selfhealing distribution system," *IEEE PES Transm. Distrib. Conf. Expo.*, Denver, CO, 2018, pp. 1-5.73
- 4. A. Arif, S. Ma, and Z. Wang, "Online decomposed optimal outage management after natural disasters," *IEEE PES General Meeting*, Chicago, IL, 2017, pp. 1-5.
- 5. A. Arif, **S. Ma**, and Z. Wang, "Optimization of transmission system repair and restoration with crew routing," *IEEE North Amer. Power Symp.*, 2016, Denver, CO, pp. 1-6.

IOWA STATE UNIVERSITY

Reference

[1] A. L. Tyler Hodge, "Hurricane irma cut power to nearly two-thirds of florida's electricity customers," U.S. Energy Information Administration, Tech. Rep., 2017. [Online]. Available: https://www.eia.gov/todayinenergy/detail.php?id=32992

[2] A. B. Smith, "2017 us billion-dollar weather and climate disasters: a historic year in

context," NOAA Climate. gov [available online at: https://www. climate. gov/newsfeatures/blogs/beyond-data/2017-us-billion-dollar-weather-andclimate-disasters-historic-year, accessed 26 May 2018], 2018.

[3] https://www.cnbc.com/2017/09/11/irma-knocks-out-power-to-nearly-four-million-in-florida-utilities.html

[4] <u>https://www.electric.coop/co-mo-electric-helping-hurricane-irma-repairs</u>

[5] https://www.vox.com/science-and-health/2017/9/11/16290234/hurricane-irma-2017-power-outages-florida-miami-naples-keys-space

[6] A. Gholami, T. Shekari, M. H. Amirioun, F. Aminifar, M. H. Amini, and A. Sargolzaei, "Toward a consensus on the definition and taxonomy of power system resilience," *IEEE Access*, vol. 6, pp. 32 035-32 053, 2018

[7] M. Panteli and P. Mancarella, "The grid: Stronger, bigger, smarter?: Presenting a conceptual framework of power system resilience," *IEEE Power Energy Mag.*, vol. 13, no. 3, pp. 58-66, May 2015.

[8] W. Yuan, J. Wang, F. Qiu, C. Chen, C. Kang, and B. Zeng, "Robust optimization-based resilient distribution network planning against natural disasters," *IEEE Trans. Smart Grid*, vol. PP, no. 99, pp. 1-10, 2016.

[9] S. Ma, B. Chen, and Z. Wang, "Resilience enhancement strategy for distribution systems under extreme weather events," *IEEE Trans. Smart Grid*, vol. PP, no. 99, p. 1, 2016.

[10] C. He, C. Dai, L. Wu, and T. Liu, "Robust network hardening strategy for enhancing resilience of integrated electricity and natural gas distribution systems against natural disasters," *IEEE Trans. Power Syst.*, vol. 33, no. 5, pp. 5787{5798, Sep. 2018.

[11] E. Yamangil, R. Bent, and S. Backhaus, "Resilient upgrade of electrical distribution grids," in *Twenty-Ninth AAAI Conference on Artificial Intelligence*, Austin, Texas, USA, Jan. 2015, pp. 1233-1240.

[12] A. Barnes, H. Nagarajan, E. Yamangil, R. Bent, and S. Backhaus, "Resilient design of largescale distribution feeders with networked microgrids," *Electric Power Systems Research*, vol. 171, pp. 150-157, 2019.

[13] S. Ma, L. Su, Z. Wang, F. Qiu and G. Guo, "Resilience Enhancement of Distribution Grids Against Extreme Weather Events," *IEEE Trans. Power Syst.*, vol. 33, no. 5, pp. 4842-4853, Sept. 2018.
[14] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, "Network flows: theory, algorithms, and applications," 1993.

IOWA STATE UNIVERSITY

Thank You! Q & A

117

IOWA STATE UNIVERSITY